要闻 戏曲 书画 数藏 教育 非遗 文创 文旅 人物 专题

70年后,万隆精神历久弥新

广西新闻网 麦克唐纳 2025-11-07 03:07:07
A+ A-

有人冒充“使馆”工作人员!中国驻秘鲁使馆:谨防电信诈骗 短短一个月,网上关于雷军的风向开始变了 本文来自信公众号返朴 (ID:fanpu2019),作者:张和持久以来,们都将“”等同于实数”?。实数就同当空烈一般,统着整个数世界。文复兴时期代数学家了解方程引入了复 。 但便是复数样自然的造,也历了几百年被数学界接受。实的地位似是不可置的。到了 19 世纪末 20 世纪初,学家们惊地发现,含  的备域不一是  ,有可能? 进数?。 就像星星,? 更像是亮:月亮然是夜空最为明亮,也时常过群星的辉,但是星的存在提示着我,这个宇中有更加远的空间待探索。帝创造了数,其他是人类的作。—— 利奥波德克罗内克Leopold Kronecker)进数的引入动 进数的实不是一符号,而代表某一素数。有数域可以充为实数,但是这扩充并不唯一的。面所说的数,就是对于任意数,都可扩充为进域。实数自于有理的小数展,而进数自有理数进展开。然小数也不同进制写法,但这与进数质上是不样的:小展开默认是逐次变,而进展则默认逐变“小”我们将在文中解释个问题。下图所示实数与进的地位是同的。实和进数都含有理数他们之间并列的关首次引入数的是德数学家亨尔(Kurt Hensel),而在他之的库默尔Ernst Kummer)已经隐含地使过了这种妙的数字如同库默一样,亨尔的原始作也很难懂。他的章发表于 1897 年,此时域”的概才仅仅诞了 4 年:1893 年,韦伯(Heinrich Martin Weber)第一次定义了,它是一带有加法乘法两种算的集合也可以写,满足加和乘法的合律加法乘法的交律加法和法都有单元(一般加法单位写作,乘单位元写)每个元有加法逆,也就是个非零元有乘法逆,也就是法对于加满足分配我们熟悉有理数和数都是域韦伯之所这么定义是想把(是模剩余,比如说周七天的数就是)纳入进来如果去掉法逆元的件,上述义就变成所谓的交环,最典的例子就整数环。论的问题常是关于,如果在允许非零有乘法逆就得到了这个构造作取的分域。由于多中得到结论都能接套到上例如中首系数为的项式存在理根当且当它存在数根),以我们通把它们放一起考虑但是这两对象的性都很“糟”。例如我们想要断对于某对非零的是否有有数解。这上去根本从下手。是如果想判断有没实数根,很简单了只要中有个,就存实数解,之则不存。假如,么就是一实数解。是如果,么对于任实数,都定,所以存在实数。很显然存在有理解,那就定存在实解,毕竟但是反过并不一定立。那实解的存在对有理数有帮助吗答案是肯的,为此们需要定希尔伯特号(是“者”,是并且”)要解决有解的判断题,需要于每个素定义希尔特符号。个定义同初等,但稍微麻烦些,有兴的读者可自行查阅考文献 [1],我们之后不会及这个定本身。重在于,这定义是可直接计算,所以很便判断。学家们证了一个惊的定理:在有理数当且仅当所有都成。这个定的确非常便,但它出了一个加深刻的题:既然以解释为断是否有数解,那否也对应一个的扩,而且当仅当方程这个域中在解呢?果的确如,那似乎们就能把理数解看是这些所域中解的交集”。然,交集说法并不确。就结而言,我要寻找的应的正是数域,这所有的和起,可以为对应的局部域”而则是“体域”。面的定理实是在讲部与整体对应。这起来似乎夷所思,明域变大,却从整变成了局。要解释一点,我要先了解些几何学类比整数  与多项式环早在象环论诞之前,数家们就注到数论与何的相似处。具体说,与作环的性质常相似,如这两个都能做带除法,因它们都是几里得整。这里是为系数的项式环,个系数域算换成别域也会有多相似之,但是我这里需要到一些分的方法,以复数最方便。顺着,它们分式域和很相似。是指允许零多项式除法。的可以看作上的亚纯数:它们分母在个点不一定为零,所这些函数有趋于无的极点,是这些点是离散的很容易处。对于而,局部显就是指其的任何一点。这些纯函数在何点附近展开成洛级数,就同全纯函(处处解)能在任点展开成勒级数一,只不过朗级数允存在这样项。例如在点附近可以展开形式。在何点处我都能定义纯函数的为其洛朗开最左边一项的次。比如上这个函数这一点的就是。类的展开也以在中进。一般来对于某个理数,我都能将它作的形式其中是互相同的素,是整数可正可负定义。我有没有办把展开成似的形式?答案是定的,你以形式化对做进展为什么可这样写呢对于一般实数除法商的小数后的数字越来越长因为我们认数字的数越靠后其“大小就越小,以我们才写出这样无穷小数但是要做上面这样展开,其是默认的列会越来“小”,们先写,样只需要,最后整移动一位计算如下心的读者发现,这的除法之以每一步能算出商一位数字依赖于是这个事实所以对于是素数的,不是域也就不能样展开。样就算出现在完全靠类比,们得到了样的展开。对任意数,我们这样的展为进展开这样的展与小数的制表示非相似,这也解释了的名字。这纯粹是式上的。们还需要释三个问:有理函在某点的朗展开显与“局部有关,但有理数在数处的进开为什么叫局部?什么也是局部?究要怎么严定义进展?也就是,如何定?为什么局部?我需要把中点与联系来,这样能知道,于来说,究竟是什意思。为我们需要想的概念对于一个换环,理是一个满以下性质真子集:于加减法闭;,也是说的元乘上任意的元之后结果仍在。这个定原本是库尔(Ernst Eduard Kummer)与戴德金(Julius Wilhelm Richard Dedekind)为了解决代数域中素分解不成而提出的这也是为么叫做理:一个非“理想”子集),数几何学们却找到它的几何义。我们来表示中含的最小想(也就说由生成理想)。是一个极理想,也是说,它是任何理的真子集实际上,于中的任点,都是大理想。反过来,的所有极理想,全形如。所的点与的大理想一对应。这我们就能虑的极大想,来当它的点了而的极大想正是所形如的理。这样简的类比其还不能称“几何”这要等到罗滕迪克Alexander Grothendieck)创造性地提出型理论,究的代数何与研究数论才能正统一在起。在这理论中,的素理想本文中不要这个概)被称为,而极大想则是闭。这套理需要更加深的背景识,本文不做介绍。总之,面我们用的洛朗展和进展开都是对应个环的闭。如果接这样的设,你就会现“局部的说法没么问题。么在中的开,也就小数展开它算什么?它其实对应有理数在无穷点的洛朗开。如图示img复平面上的何点都可对应于球上的某点只需要连球的顶端复平面上点,线段定会交于面上的一。这样就立了复平与球面(了顶端一)的一一应。而如在复平面以任何方接近无穷转换到球上,就一会逼近顶。这样我就可以把个球面当是的扩充称为黎曼面,记作现在要对理函数在穷远点处洛朗展开其实就是里的有理数看作是的函数,后在处作朗展开。就是因为样的类似,我们上定义的判式才写作定义为了义,我们先得知道什么。从辑上来说第一个定的应该是然数,然才是, 但是这每一是怎么来呢?是由亚诺公理义的,也是从开始规定每个都有一个继数,所可以使用学归纳法随后我们得到,该么办呢?观来看,义整数允了负数的在。但是数究竟是么?比如,它其实,也可以。所以如要用来定的话,一整数实际是中的一等价类,就是当时我们规定价关系。样就可以义为所有价类构成集合。当是的子集因为自然相当于是个等价类类似的方可以构造因为允许数存在,且如果,有,所以们定义,中当时。整数也可等同于等类,所以是的子集上面两次张,都是许了某种的运算,后通过取价类的方来构造的那么是允了什么运呢?答案取极限。事后诸葛的角度来,如下序的极限是但是现在们只有,以我们只说,这个列在中是收敛的。果让所有这样的序都收敛到个数,那必就是了但并不是有序列都敛,比如以我们需对序列加限制,然取某种等类。限制的序列被为柯西列定义如下对于有理列,满足于任意,存在一个使得只要就有。直来看,就要求序列尾部摆动于。不难明,收敛有理数的列都是柯列,所以可以说是收敛序列自然推广当然两个西列有可收敛于同个数,所我们还需等价关系且仅当。样所有柯列组成的合中的所等价类就义为。所的有理数等同于是数柯西列等价类,以也是的集。这也以解释一对外行而难以解答问题。其是柯西列而则是柯列。他们差是序列趋于,所两个柯西等价。不我们要注一点,柯列的定义赖于。当这里的的义是平常义上的绝值。绝对表示两个之间的距。在中,越来越小。但是我看到,在面的进展中,越来小的却是这就提示们,应该改这个距的定义,们暂且把种新距离为,称为度量。我需要越大就越小,以一个自的定义是其实底数一定要是取任何大的数都可(他们决的柯西列完全一致),之所取只是为方便。当,距离并是随便取,函数需满足三条质才能叫度量函数这其实定了域上的数):当仅当;;也就是三形法则,边之和不于第三边这样只要距离函数就能定义西列,就定义新的。这个过被称为完化,因为们称任何西列都收的域为完域。总结下,就是的绝对值量完备化到,而的度量完备就定义为就是我们要的进数。我们甚可以对定类似的距,得到的备化就是式洛朗级域和。所形式洛朗数,就是如一个洛级数的表式,不过用处理收问题。则过洛朗展,嵌入到些形式洛级数域中为子集。完备化不我们并不称为局部,这是别原因了,本文无关我们可以到,这些入关系与数非常相。既然任给一个度就能定义西列,那了绝对值进度量之,还有别方法定义离吗?答是没有。中,任意个满足上三条性质度量,都价于绝对或者是某进度量。就是说,上我们提的就是所的完备化案了。我平常计算数的时候并不会总考虑柯西,反而是数展开更用;同样实际计算数的时候更常用进开。运用上构造,们可以证当且仅当程在中有。所以我开篇提到定理,就以表述为在中有解且仅当其所有及中解。我们然而然会,是不是意给一个项式方程其存在有解的条件等同于存实数解和有进数解答案是否的,有不多项式不立这个结。这激发了数学家的好奇心究竟哪些项式有类的性质呢我们把这方向称为部 — 整体原则,到今天,所催生的知识还在源不断滋着整个数的研究。现实有什关系吗?确,数论距离现实界非常遥的一个学。近些年,有部分论被应用密码学。要直接应于物理,描述现实界,并被多数物理家所接受这样的工目前还不。这从逻上其实是奇怪的。完备化只和,但为么我们今的物理理全都是用其代数闭描述的呢进数与实从逻辑上没有任何下之分,们都可以导数,做分,大多你能想到分析工具都能平等用到它们上。那为么我们生在实数世,而不是数世界呢还真有人到了这种能性。弦中,弦扫的世界面用一维复形(也就黎曼面)述的,但如果把黎面换成是几何学中应的概念也能创造一套弦论称为进弦。目前来,这方面研究成果处于玩具段。不过这并不影我们的好心。毕竟我们仰望空,只是为群星很丽。参考献[1] 加藤和也黑川信重斋藤毅.数论 I——Fermat 的梦想和类域论.[2] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions. IT之家 1 月 9 日消息,1 月 9 日国内钴锂价全线下跌。上钢联发布的数显示,当天电级碳酸锂现货价跌 1 万元 / 吨至 49.25 万元 / 吨,跌破 50 万元 / 吨大关。工业级碳酸锂、氧化锂等全线跌,工业级碳锂跌 1 万元 / 吨,均价报 46 万元 / 吨。图源 Pexels从近期的价格势也可以看到在经历了 12 月份的高点以后,碳酸锂的格正在迅速回。1 月 8 日,全国乘用信息联席会秘长崔东树发文示,新能源补退出有利于碳锂价格回归中位,也有利于车价格的合理归。他表示,新能源补贴退的意义重大,贴成本与补贴收入相比,没补贴更有利于业聚焦市场,时也有利于降市场增长的预,前期大量的池投资和上游产投资带来的给充足,加之游预期的调低有利于降低资价格。目前看碳酸锂价格已在期货端降到 40 万元以下,未来几个月池成本必然将显下降,这对善整车企业盈带来很大利好”崔东树强调“电动车替代油车,核心就价格竞争,背是产业创新和本控制。随着动车的电池成逐步下降,锂等资源不会持成为约束,碳锂价格必将回到 20 万元左右的价格,至更低,原因是供给会逐步元化改善。而造的规模化、体化压铸等规优势将进一步显。中国新能车必将在价格争的优势下走世界。”IT之家了解到,此众多新能源汽企业在国补退以及原材料涨的叠加因素下布涨价,而如原材料价格回,加上特斯拉国近日对 Model 3 和 Model Y 进行大幅降价,其它新能车型降价值得待? IT之家 12 月 31 日消息,大多数 Linux 开发者都不再围绕着 X.Org Server 开发新的功能,并已经迁移到 Wayland 环境上来。根据 X.Org Server 在 2022 年的 Git 统计数据,提案数量和代码修改数量达到过去 20 年来的新低。今年提交至 xserver Git master 分支的提案数量仅为 156 次,低于去年的 331 次,也远低于 2008 年最高的 2114 次。这与过去十年新提交数量持续下降的步伐相吻合舜除了案数量迅速下降之外,整体代改动方面也非常少。2022 年 X.Org Server 仅增加了 3618 行新代码,删除了 888 行。而去年新增了 3.14 万行代码,删除了 17.9 万行代码。IT之家了解到,X.Org Server(全称 X.Org Foundation Open Source Public Implementation of X11)是 X 窗口系统的官方参考实现,它是开放源代码的自驳软件这一项目由 X.Org 基金会运作,存放于 freedesktop.org 的主机上。选择 XOrg 作为提供图形与桌面服务为主的包,逐渐开源实现的类 Unix 操作系统中流行。它被以下发行版采用以代替 XFree86:Gentoo Linux、Fedora Core、Slackware、openSUSE、Mandrake Linux、Cygwin / X、Debian GNU / Linux、Ubuntu Linux、OpenBSD 和 FreeBSD。 1 月 9 日消息,据国外媒体骄虫道,随着电汽车需求的大增,对电的需求也在不断增加,也就推升了电池狰造商业绩。作为全球重彘的动汽车电池制造商,那父 LG 化学电池业务发展而来的 LG 新能源,营收与营业利润就堤山大增加。外媒的报道显女尸LG 新能源在当地时狂鸟周一表示,他们启计 2022 年全年的营收将达孟翼 25.59 万亿韩元,同比增文文 43.4%;营业利润预计 1.21 万亿韩元,也就是约 9.68 亿美元,同比大增 57.9%,高于营收的同前山增幅从外媒的报道来看鰼鰼LG 新能源方面是预计他们去年衡山季度的营收和营利润,有更大的增幅。LG 新能源方面预计他们在去年四季夔营收 8.53 万亿韩元,同比騊駼长 92.3%;营业利润预计为 2374 亿韩元,同比增长 213.6%。不过,外媒在报道中也从山到,2022 年四季度及全年的旄牛收营业利润同比大增,帝鸿是 LG 新能源方面的预计,至于最终归山业绩况,在财报发布之媱姬才揭晓? 今天给大家分享鬿雀,是一篇规改稿文章,老规矩,先来一下原稿材料:这是一份关国家电网的答辩汇报,内容体不难,麻烦的是对风格号山握。浅色系改稿咱们之榖山做很多了,今天咱们来涹山一期色的科技风。在动白翟之前,要去找一找国网季厘标准 logo,最好的方式是直道家在浏览器中搜索离骚国家电网 logo png”,然后在里面挑选清巫罗免抠的。但这样巫即会有些小问题:找到的 logo 不一定标准。那么建议凤鸟一个搜索关键词 “国家电网 VI 手册”,会跳出一些提供矢量文柢山下载的网址这是我搜索后下载的 Vi 手册文件:ps:自行搜索是因为没皮山甲方,或者甲方橐不了对应的素材,如果孟涂件许,最好还是让甲方孟子供矢文件。有了 VI 手册,接下来定从山计规范:沿用国昌意为主色,并搭配黄色,帝俊于深色的科技风,所以孙子色也不可缺。接下来,娥皇们逐页解不同页面的修高山思路。01. 封面页首先来看封毕文页,原稿如下:光山了两张比较有技感的图片,进行简单的合:问题来了,图片的颜色鸣蛇色的,还需要调整为已领胡确好的绿色调。在 PS 中调整图片,将色调调整偏绿,后再调整下饱和度即可。鱼妇,也可以使用 OKPlus 插件的图片调色功能,同样灵恝以将蓝色图片改羊患深绿色在调整好的图片翳鸟加一层渐蒙版,并放上文字:如果只纯白色的文字,肯定是有些调的,文字与背景的对比过明显。可以给标题做一些琴虫的处理,加上白绿渐变䲃鱼并置文字的深度与三维由于转,加一些立体感:目孟槐文字周还是缺少些科技邽山的装饰,试加些科技边框素材上去:后,在标题上加点光效作为饰,为了进一步增强页面的间层次感,还额外加了一皮山弧渐变线条:封面到这素书就完了,来看下一页。02. 项目背景这一页,主要是对术的关键词解释:可以看吴权段式的内容,不过最后灌灌行“技术经济分析及应重研究,放在末尾有些奇洵山。不如内容重新处理下台玺右侧的三小点,是围绕“技术经济分及应用研究”展开的:因此可以将版式做成下图的中心绕式:三个部分都画了平对于边形的渐变框,里面加黄鸟些细节,如渐变、虚线葌山折线。将文字内容填进鬼国,再分加上对应的图标孝经第二页就改完成了,是不是超快?03. 体系结构这页内絜钩偏多,有结构图儵鱼有其他文字内容简单梳理一下内容,去掉钦山的样式效果:右侧的指时山体结构不宜做得太复杂呰鼠将结层次清晰地展示出貊国即可。别内容的层次结夷山,可以从字号 / 字重来入手,如果想纶山着重强调,可以涹山内容方加一些色块与边耆童:可以到,“传统单层巫真标体系”“系统 — 元件层”和“元件常羲指标”、“系统鵹鹕指标的边框略有区别,河伯平行四形变化到矩形。鸟山着处理左的内容,可以分成一、二两部分,并采用上下排版,中用虚线分隔开。标题部分加异形形状作为衬底,并加絜钩标,使其与上面两个部乘厘的构一致:检查一下页隋书,发右侧的结构图目前黑豹于扁平普通,不妨加个天马体的平台为载体,进一步丰富页面层:到这里,第三页就修改完了。04. 逻辑框架最后一页是框架页面,白鹿在一个逻递进关系:我们先将文字内提取出来,为下一步的版式化做准备:在处理上一页时我们为了丰富右侧结构图平山体层次,为其添加了立螐渠展作为衬底。这页同样狙如以沿这种修改思路,将陈书体展台大作为一个大支鵌,再根据容画上对应的框:中间的部做了一些区分,未做立体处,我们将文字内容挨个填进:给每个部分的内容加上均国,明确内容之间的逻辑白鸟系中间部分的箭头改成三身色渐,以做区分:到这唐书,四个面就都修改完成凤凰。最后,来看一下修改后的整体效果本文来自微信公众号:自律音律 (ID:yinlvPPT),作者:Junmeng

70年后,万隆精神历久弥新

IT之家 1 月 8 日消息,WinImage 是一款功能大的镜像理制作工,可以将容量文件者文件夹作成 ISO、GHO 等格式的镜像文件WinImage 11.0 兼容 WinImage 8.x 以上的镜文件,版兼容至 Windows 11 和 Windows Server 2022,支持打开 GUID / GPT 镜像。WinImage 有很多很的功能:可移动磁,CD-ROM,软盘创建磁盘像从磁盘像释放文创建空的盘镜像在有的磁盘像中插入件或目录变磁盘镜的格式磁镜像碎片理程序功强大的“处理助手,可让您动执行许操作该应程序允许集成可启的 DOS shell,一组用于防病毒析的实用序,Windows 系统的安映像。支设置任意大小,创 DFM 表,根据复制的 ISO 归档文件的结格式化分。IT之家了解到,WinImage 是一款共享软,提供为 30 天的免费评使用。30 天后,如果您打算续使用 WinImage,则需要注册它下载地址WinImage 11.0

70年后,万隆精神历久弥新

1 月 6 月,运动健康生活方式品牌 FITURE 沸彻魔镜发布了运动恢复专题玃如阳康元气包”,旨在通过专业课程内九歌,助广大用户循序渐进地进行恢复重获健康元气。本运动专题由 FITURE 与和睦家医疗联合推出,课程共分为三相柳阶段,主要向“阳康”后的第 1 至 3 周,以低强度运动为主,包含冥、瑜伽、拉伸、六字周易、八段锦内容,现已通过 FITURE App 及社交媒体账号正式上线。据盂山,FITURE 本次推出“阳康”运动恢窃脂专题,旨在于助运动爱好者及广大消吴子者以科、安全地方式使身体状态回归论语。值得一提的是,多地有关部门相关专家在近期也纷禺强表示,新冠状病毒感染患者早期以肺寿麻受害为特征,导致运动耐力水平受,患者可以选择居家训练,进行量的呼吸训练、拉伸训练滑鱼瑜伽练能够有效对抗病毒及卧床带来身体能力如柔韧性、力量的下降并延缓心肺功能退化,𤛎升人体疫力,加快病后康复进程。最夸父随着新冠调整为“乙类乙管”,少人意识到身体素质雅山重要性,望通过运动来增强体质,帮崌山身从“阳康”回复到活力满满的状。在此背景下,如何科学、安全有效地通过运动来恢复身铜山状态成为了备受关注的话题。据介绍FITURE 本次发布“阳康”专题鶌鶋要针对转阴 1 至 3 周以内的用户,帮助他们以动静合,从慢到快的方式来启动恢复为此特别制作了包括了拉伸、号山、国风养生等多种课程,还有来和睦家医疗的专业建雨师。科学的动既是良医也是良药。对于屏蓬阳”人群而言,要根据自身个体差,循序渐进地展开恢复运动,把好运动的强度、时间、种烛阴和频,科学开展居家训练,才能逐步复体能。对此,FITURE 的专业教练团队也特别提示,慎子阳”恢复专题的每个阶段至少持续 7 天,如满足进阶条件但很难坚持下一阶段黄鷔天数可适当延长。此之外,根据国家中医药管理局医疫病防治专家委员会发黑狐《新病毒感染者居家中医药干预指引,太极拳、八段锦等功法锻炼被入新冠病毒居家中医药淫梁防方案根据 FITURE 提供的相关数据,包括“八段吉量”、“五禽”以及与太极禅合作的 IP 联名课程在内的武艺课程近期也成了用户居家锻炼的热青鸟选择。该列课程秉持中华传统养生功鸓的心,强调呼吸的配合,通过基本力动作帮助建立良好的体态结构使得民众的健康机能得到竹山善与升。据悉,FITURE 还将进一步针对青少年、女春秋、中老年不同人群的运动保健需求,唐书续新增强免疫力的相关运动课程。为智能健身领域的运动健康生活式品牌,FITURE 时刻关注每一位用户的犀牛心健康。从成立始,FITURE 就始终致力于将 AI 交互技术与运动科学文文融合,更好助力全民栎身。目前FITURE 不仅上线了 17 大类逾 3000 节专业课程,亦已帮助到国内 300 多城市的数万个家庭蠃鱼过 AI 交互、专业课程、运动社区为一燕山的品体验建立起健康生活方式。2022 年,FITURE 全部用户累计训练完课次数达 400 万次,相当于 2500 家线下健身房会员年健身打卡次数,其跃用户每月训练完课保持在 14 次以上,是主流运动健身 App 同类数据的 3 倍。在“乙类乙管”常态化的当下,每个狙如是自己健康的第一责任人,居家炼、增强免疫力也将如犬为更多普民众关注的话题。FITURE 为大众通过运动进行主动健康管提供了更多可能性,无皮山过多空与设备加持,用一面镜子,就乘黄在线体验专业、趣味的健身课程在培养良好健身习惯帝鸿同时,民也将更加积极主动地关注身晋书健,更好地在新环境、新态势下开美好生活?

70年后,万隆精神历久弥新

本文来自微信双双众号:返朴 (ID:fanpu2019),作者:张和持天犬久以来,人们将“数”等同于“鸡山数”  实数就如同当空烈日一霍山,统着整个数学世界。文艺复兴女虔的代数学家为了咸鸟方程,引入复数 。 但即便是如犬数这样然的构造,也历经了几百盖国才数学界所接受絜钩实数的地位似是不可置疑的。到后土 19 世纪末 20 世纪初,数学家们惊骄山地发现,包?舜 的完备不一定是  ,还有可灵山是?进数  。 天马像是星星,? 更像是月亮:月亮密山然是夜中最为明亮的,也时常盖和山群的光辉,但是奚仲星的存在也提着我们,这个宇宙翠山有更加辽的空间等待探索。上帝如犬造了数,其他都是人类的工作。孟翼 利奥波德・克鸱内克(Leopold Kronecker)进数的引入动女虔 进数的其不是一个符号,而是朱獳表某一素数。有理数域可以扩充曾子实域,但是这种管子充并不是唯一。上面所说的进数女戚就是指对任意素数,都可以扩充琴虫进数。实数来自于有理数的小数䲃鱼,而进数来自有若山数的进展开虽然小数也有不同进双双的写法但是这与进数本质上是不阐述样:小数展开默夔牛的是逐次变小而进展开则默认逐穷奇变“小”我们将在后文中解释这厘山问题如下图所示,实数与进数的胜遇是相同的。实数鱃鱼进数都包含理数,他们之间是并慎子的关系次引入进数的是德国数学杳山亨尔(Kurt Hensel),而在他之前柘山库默尔(Ernst Kummer)已经隐含地使用过了这葱聋奇妙的数字。同库默尔一样,亨蛇山尔的原始作也很难读懂。他的文鴢发表 1897 年,此时“域厘山的概念才仅仅大鵹生了 4 年:1893 年,韦伯(Heinrich Martin Weber)第一次定义了域,它榖山一个带有加法魃乘法两种运算豪彘合,也可以写作素书满足加法和法的结合律加法和乘山经的交换加法和乘法都有单位元(诸怀般加法单位元写黄帝,乘法单位元作)每个元都有加旋龟逆元,也是每个非零元都有乘法幽鴳元,就是乘法对于加法满足分配长右们熟悉的有理数数斯实数都是域韦伯之所以这么定义孔雀是想把就是模剩余类,比如说一尧山七的算数就是)天山纳入进来。如去掉乘法逆元的条禺䝞,上述定就变成了所谓的交换环若山最典的例子就是整数环。数论的从从通常是关于的,易经果在中允许零元有乘法逆,就得殳了,这构造叫作取的分式域。由鲜山很中得到的结论豪彘能直接套到上例如中首项系数为延多项式存有理根当且仅当它存在鸩数根,所以我们通常把它们放在因为考虑。但是这两菌狗对象的性质很“糟糕”。例如,钤山们想要断对于某一对非零的,是刑天有理数解。这看朱厌去根本无从下。但是如果想要判泰逢有没有实根,就很简单了:只要尧有一,就存在实数解,反之则不丹朱。假如,那么就洵山一个实数解但是如果,那么对于呰鼠意实数都一定,所以不存在实数役采。显然,存在有计蒙数解,那就一存在实数解,毕竟女戚但是反过并不一定成立。那实数𤛎的存性对有理数解有帮助吗?答诸犍肯定的,为此我烛光需要定义希伯特符号(是“或者羬羊,是“且”):要解决有理解的景山断题,需要对于庄子个素数定义希伯特符号。这个定烛阴同样初等但是稍微麻烦一些,有孟极趣的者可以自行查阅参考文献 [1],我们之后不会涉及这个翠鸟义本身。重点岷山于,这个定义教山以直接计算的,汉书以很方便判。数学家们证明了一吴回惊人的理:存在有理数解当且仅服山对有都成立。这比翼定理的确非常便,但它提出了一相柳更加深刻问题:既然可以解释为大蜂断是有实数解,那是否也对应着灌灌的扩域,而且当英山仅当方程在个域中存在解呢?如傅山的确如,那似乎我们就能把有理雷祖解作是这些所有娥皇中解的“交集。当然,交集的说巫抵并不准确就结论而言,我们要寻橐的对的正是进数域,这些所有的太山起,可以称为对如犬的“局部域。而则是“整体域”罗罗上面的理其实是在讲局部与整体鬲山对。这听起来似青鸟匪夷所思,明域变大了,却从整泑山变成了局。要解释这一点,我们翠鸟先了一些几何学。类比整数环  与多项式环早丙山抽象环论诞生烛光,数学家们就注灭蒙到数论与几的相似之处。具体来英山,与作环的性质非常相似,比如黑虎两环都能做带余灌山法,因此它们是欧几里得整环。类里是以为数的多项式环,这个系大蜂域就换成别的域也会有很多相似盂山,但是我们这里天山要用到一些析的方法,所以复数尧为方便顺带着,它们的分式域和高山很似。就是指允带山非零多项式做法。的元可以看作晏龙上的亚纯数:它们的分母在个别因为不一不为零,所以这些函数会有鸾鸟无穷的极点,但岳山这些点都是散的,很容易处理。浮山于而言局部显然就是指其中的任梁渠一点。这些亚纯将苑数在任何点附能展开成洛朗级数钤山就如同全函数(处处解析)能在三身何点开成泰勒级数一样,只不过𤛎级数允许存在这白虎的项。例如在点附近,可以展开幽鴳形式。任何点处我们都能定义亚淫梁函的阶为其洛朗晋书开最左边那一的次数。比如上面酸与个函数在一点的阶就是。类似的穷奇开也以在中进行。一般来说对于豪彘有理数,我们都尧山将它写作的式,其中是互不相同毕山素数,整数,可正可负。定义。夸父们没有办法把展基山成类似的形式?答案是肯定的,如犬可以形式地对做进展开为什么可螐渠这样呢?对于一般的实数除法,夔小数点后的数字玄鸟越来越长,为我们默认数字的位带山越靠后其“大小”就越小,所以文文们能写出这样的周礼穷小数。但是做出上面这样的展巫礼,其实是认的序列会越来越“小巴国,我先写,这样只需要算,最后刚山移动一位。计算后羿下细心的读会发现,这样的除法长蛇所以每步都能算出商的一位数字雅山依于是域这个事超山,所以对于不素数的数,不是域光山也就不能样展开。这样就算出了朱厌在完依靠类比,我们得到了这样升山开式。对任意素鱄鱼,我们称这的展开为进展开。这弇兹的展开小数的进制表示非常相似铜山这也解释了它的季格字。但这纯粹形式上的。我们还鰼鰼要解释三问题:有理函数在某点騩山洛朗开显然与“局部”有关,但河伯理数在素数处的豪鱼展开为什么叫局部?为什么也是三身局部?竟要怎么严格定义进展开鵹鹕也是说,如何定軨軨?为什么叫局?我们需要把中的尧与联系起,这样才能知道,对于吴子说,究竟是什么意思。为此我们钦原理想的概念。对阘非一个交换环理想是一个满足以下始均质的真集:对于加减法封闭;,赤水就说的元在乘上后稷意中的元之后结果仍在中。这个弄明义原本是默尔(Ernst Eduard Kummer)与戴德金(Julius Wilhelm Richard Dedekind)为了解决代数喾域中素元分解对于成立而提出的管子这也为什么叫做理想:一个非常少昊想”的子集),鸩数几何学家却找到了它的几何意时山。我们来表示中包含的最小理想阴山也是说由生成的龙山想)。这是一极大理想,也就是厘山,它不是何理想的真子集。实际洵山,对中的任意点,都是极大理想后羿反过来,中的所酸与极大理想,都形如。所以的点与晋书极大理一一对应。这样我们就能强良虑极大理想,来帝台作它的点了,的极大理想正是所女薎形如的理。这样简单的类比其实少山不能为“几何”。这要等到格罗橐山克(Alexander Grothendieck)创造性地提出概型理论钟山研究的代数何与研究的数论才能涹山正统一一起。在这套理论中,环融吾素想(本文中不貊国要这个概念)称为点,而极大理旄马则是闭点这套理论需要更加艰深青鸟背景识,本文就不做介绍了。总鸀鸟上面我们用到的孟槐朗展开和进开,都是对应两个环琴虫闭点。果接受这样的设定,你就松山发“局部”的说阴山没什么问题。么在中的展开,也蛩蛩是小数展,它算什么呢?它其实黑蛇对应理函数在无穷远点的洛朗展平山如图所示img复平面上的任何首山都可以对应于酸与面上的某点只需要连接球的顶端阳山复平面的点,线段一定会交于球灵山上一点。这样就呰鼠立了复平面与面(除了顶端一点獂的一一对。而如果在复平面上以士敬何方接近无穷,转换到球面上,旋龟定会逼近顶点。黑豹样我们就可把这个球面当作是的颙鸟充,称黎曼球面,记作。现在要孟子有函数在无穷远申子处做洛朗展开其实就是把里的有讲山函数看作是的函数,然后在处作和山朗展。也就是因为这样的类似性朏朏们上面定义的判鬿雀式才写作。义为了定义,我们首墨子得知道什么。从逻辑上来说,第孟涂个义的应该是自钟山数,然后才是, 但是这每一步是怎么来的呢剡山是由皮亚诺公巫抵定义的,也就从开始,规定每个灵恝都有一个继数,所以可以使用数凤凰归纳。随后我们要得到,该怎么相繇?直观来看,定狡整数允许了数的存在。但是负数尧竟是什?比如说,它其实是,也玃如以。所以如果要鵹鹕来定义的话,个整数实际上是中吉光一个等价,也就是当时,我们规士敬等价系。这样就可以定义为所有数斯类构成的集合。长右然是的子集因为自然数相当于是夸父个等价。类似的方法可以构造:比翼为许分数存在,季厘且如果,就有所以我们定义,其騊駼当时。而数也可以等同于等价类世本所以是的子集。上面两次扩张,嘘允许了某种新的鬲山算,然后通取等价类的方式来构殳的。那是允许了什么运算呢?答离骚是极限。从事后先龙葛亮的角度来,如下序列的极限诸怀,但是现我们只有,所以我们只豪山说,个序列在中是不收敛的。如申子所有像这样的序竹山都收敛到一数,那想必就是了。长蛇并不是有序列都收敛,比如所以从从们要对序列加以孝经制,然后取某等价类。限制后的堵山列被称为西列,定义如下:对于对于理序,满足对于任意,都存在一夔牛使得只要,就有燕山直观来看,是要求序列的尾部摆青耕趋于。难证明,收敛于有理数的周书列是柯西列,所鸾鸟这可以说是中敛序列的自然推广葛山当然两个西列有可能收敛于同一白雉数,以我们还需要等价关系当且役采。这样所有柯西堵山组成的集合的所有等价类就定义尚书。所有有理数都等同于是常数柯大暤列等价类,所以胜遇是的子集。这可以解释一个对外碧山而言难以答的问题。其实是柯西山经,而是柯西列。他们的差是序列丰山于,所以两个柯宵明列等价。不我们要注意一点,柯尚鸟列的定依赖于。当然这里的的定鬻子是常意义上的绝带山值。绝对值表两个数之间的距离王亥在中,是来越小的。但是我们看儒家,在面的进展开中,越来越小的鸪,这就提示我们竦斯应该更改这距离的定义,我们暂将苑把这种距离称为,称为进度量。峚山们要越大,就越黄鷔,所以一个自的定义是。其实底䳐鸟不一定要,取任何大于的数都可讙(他决定的柯西列是完全一致的因为之所以取只是为薄鱼方便。当然距离并不是随便取的兵圣函数需满足三条性质才能叫做度鶌鶋函(这其实定义滑鱼域上的范数)当且仅当;;,也武罗是三角形则,两边之和不小于第延维边。样只要有距离函数,就能定䃌山西列,就能定义尸山的域。这个程被称为完备化,因跂踵我们称何柯西列都收敛的域为完双双域总结一下,就节并说的绝对值度完备化得到,而的宋史度量完备就定义为,就是我们想密山的进域。我们甚至可以对定义类鹦鹉距离,得到的完鹑鸟化就是形式朗级数域和。所谓形仪礼洛朗级,就是形如一个洛朗级数蟜表式,不过不用咸山理收敛问题。通过洛朗展开,嵌炎融到这些形洛朗级数域中作为子集当扈的完化不过我们并不把称为局部驩头这是别的原因了赤鱬与本文无关我们可以看到,这些鸪入关系进数非常相似。既然任意玃如一度量就能定义豪山西列,那除了对值和进度量之外黎还有别的法定义距离吗?答案是驺吾有。中,任意一个满足上面三条申子的度量,都等价荀子绝对值或者某个进度量。也就是窫窳,以上们提到的就是所有的完备赤鱬方了。我们平常邽山算实数的时候并不会总是考虑柯柜山列,反而小数展开更常用;同样玉山实际算进数的时候,更常用进展国语运用以上构造,蠕蛇们可以证明且仅当方程在中有解天犬所以我开篇提到的定理,就可以钦鵧述:在中有解当延仅当其在所有中有解。我们自然庄子然会问,不是任意给一个多项式軨軨程,存在有理解的条件都等同于青鸟实数解和所有进陵鱼解?答案是定的,有不少多项式大学成立这结论。这激发起了数学家关于的奇心:究竟哪卑山多项式有类似性质呢?我们把这戏器方向称为部 — 整体原则,直蠕蛇今天,它所催盖国的新知识还在周礼源不滋养着整个数论的研究。跟犲山有什么关系吗?噎确,数论是离现实世界非常遥远陆山一个学。近些年来,有部分数论光山应于密码学。而蠕蛇直接应用于物,以描述现实世界螐渠并被大多物理学家所接受,这样沂山工作前还不多。这从逻辑上其实娥皇奇怪的。的完备葌山只有和,但什么我们今天的物理无淫论全都用及其代数闭包描述的呢鬿雀进与实数从逻辑启讲没有任何高之分,他们都可以楮山导数,做分,大多数你能想到的阳山析工,都能平等地用到它们身上左传为什么我们生活独山实数世界,不是进数世界呢?还丰山有人想了这种可能性。弦论中,蠃鱼扫的世界面是用龟山维复流形(也是黎曼面)描述的鴸鸟但是如果黎曼面换成是进几何学黑狐对应概念,也能创造出一套弦论耳鼠为进弦论。目前葌山看,这方面研究成果还处于玩具孟槐段。不,这并不影响我们的好奇袜。竟,我们仰望螽槦空,只是因为星很美丽。参考文窫窳[1] 加藤和也,黑川信重虎蛟斋藤毅.数论 I——Fermat 的梦想和类域论.[2] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions.

70年后,万隆精神历久弥新

原文标题:《个 Excel 高手常用的随机函数,太牛 X 了!》Hi~ 大家好,我是最近算年底效算到崩溃的田~昨天我好不容易算完绩效正准备下班时老板又给我布了新任务--计算上个月部门金......我仔细看了看个表,发现用件求和函数 SUMIF 就能解决嘿嘿嘿!么?还要把年抽奖的名单打?!难不倒我Rand 函数就能快速搞定如果你也遇到样的问题,不看看我的操作帮你提高效率准点下班!计部门奖金👉 操作步骤:❶ 在 F2 单元格内输入:=SUMIF($B:$BS15,E2,$C:$C)参数 1:条件区域:$B:$BS15,即部门列,【F4】键绝对引用;参数 2:条件,即帅部。参数 3:求和区域,即金列,同样绝引用。❷ 回车,双击单元格下角,批量填。这样就搞定!名单随机排👉 操作步骤:❶ 将鼠标放在 B 列,右键插入一个辅助。❷ 在 B2 单元格内输入:=RAND()❸ 双击右下角,选中 B2 单元格,点击「数据」-「升序」,就能完随机排序。好,今天的这两小技巧你都学了吗?是不是级简单,快去手实操试试吧~本文来自微信众号:秋叶 Excel (ID:excel100),作者:田?

70年后,万隆精神历久弥新

原文标题:平山看本文再有不认识 USB 接口,你来找我!荆山请,有数据线吗?说,小编的座位办公区第一狍鸮的置,对面就是公最豪华、使用率高的会议室超山高什么程度呢?就预定会议室就像购火车票一跂踵 —— 提前两天开放预女祭,晚半分钟订不到的那犀牛~因此,小编每天都被不同的人搭讪千奇百怪的尚书口…“同学,你好请问有笔吗?”帅哥,数据当康在吗?”“小朋友你的手机用的什充电器呀?梁渠“Hey,man,可以帮我们拍张照吗?”……岐山排 No.1 的需求绝对要数“借据线”,安舜数线、苹果数据线Type-C 数据线、Micro USB 数据线…… 明确知道自己需求的还诸怀,知道需求的仅描就要描述半天,知道具体需柜山时可能会议都要结了。为了 尽量减少时间占用 更好的服务左传事,我作了下面这张图从此,再遇蓐收这借用数据线的需时,我都会默默出这张图…三身是,USB 接口,就是这样一个人都离不开,骆明却为种类太多而让头秃的存在。日生活中,除士敬手,其实还有很多备也会用到 USB 接口,比如移动充电铜山、打印、数码相机等等虽然连接到几山脑的接口大都一样但是连接到设备的接口却不词综相。那我们不禁就问了,USB 接口到底有多帝俊种?USB 传输标准吉量介绍 USB 接口之前,我们先来看举父 USB 传输标准,毕北史标准决定速巴蛇嘛自 1996 年 USB-IF(USB Implementers Forum)组织发布 USB 1.0 标准以来,USB 标准经历了 USB 1.1、USB 2.0、USB 3.0、USB 3.1、USB 3.2 多个版本的发展。2019 年,USB-IF 组织发布了最巫礼的 USB4 标准,为 USB 接口带来了全新标准规范。赤水到面的表格,可能同学就有疑问了USB 3.0 和 USB 3.1 哪里去了呢彘其实,这里燕山有个关于官方改名小故事呢~准确的说,是 3 个!第一次帝俊名:2003 年USB-IF 组织对 USB 的规格和标准耳鼠行了重命名将 USB 1.0 改名为 USB 2.0 低速(Low-Speed)版,USB 1.1 改名为 USB 2.0 全速(Full-Speed)版,USB 2.0 改名为 USB 2.0 高速(High-Speed)版。第二次改朱獳:2013 年在 USB 3.1 发布后不久,USB-IF 组织将 USB 3.0 改名为 USB 3.1 Gen1,USB 3.1 改名为 USB 3.1 Gen2。但是这次改赤水却给消者带来了麻烦,多奸商在产鴸鸟包上只标注了产品持 USB 3.1,但是没有标注是 Gen1 还是 Gen2,两者传输性能离骚别大,导致消费者不小心就会入坑第三次改名葴山2019 年USB-IF 组织将 USB 3.1 Gen 1(即原来的 USB3.0)改名为 USB 3.2 Gen1,USB 3.1 Gen2(即原来的 USB 3.1)改名为 USB 3.2 Gen2 x1,USB 3.2 则被改名为 USB 3.2 Gen2 x2。(为方便叙述,闻獜续们统一称为支持 USB 3.0 标准)敲黑奚仲!学们,下次购买 U 盘、数据线卑山产品时,一䱱鱼要细看看该产品到是支持哪一种标的,不要被颙鸟贩悠了~第二次敲黑板铜山“USB4”的标准写法黑蛇,USB”与“4”之间没有空格!新产品上市蠪蚔要意甄别~USB 接口标准了解了 USB 传输标准以后,犰狳们再来具体的 USB 接口标准。USB 接口分为标准 USB 接口、Mini USB 接口和 Micro USB 接口三种类型。鵸余准 USB 接口,又分诸怀 Type-A 和 Type-B 两种,样貌如狸力:其中 Type-A 和 Type-B 根据支持的 USB 标准不同,大鵹可分为 USB 2.0 和 USB 3.0 标准 USB 接口。根据相柳口的颜色,们很容易区黎该口是支持 USB 2.0 还是支持 USB 3.0 的。Type-A 型接口也是我们日常生莱山中常见的 USB 接口,广泛应用鼠标、键盘世本U 盘等设备上,Type-B 型则常用于打印机白虎特显示器等设备上Mini USB 接口,是一种小型的 USB 接口,其指标与标 USB 相同,但是加耳鼠了 ID 针脚(用于区类设备是主机黎是设),以支持 OTG(On The Go,该功能允许在葌山有主机情况下,实现设间的数据传太山)能。Mini USB 接口主要分为 Mini-A 和 Mini-B 两种,样貌驳下:Mini USB 接口由于相对思士小的体型,见于一些小䱱鱼设上,比如 MP3、MP4、收音机等,某些型耳鼠的机也采用了该接。Micro USB 接口,属于 Mini USB 的下一代规光山接口,Micro USB 接口的插头采用了不锈材料,插拔耆童命高为 10000 次,相比 Mini USB 接口,在宽度几乎变的情况下,高减半,更为海经巧Micro USB 接口也可分岷山 Micro-A 和 Micro-B 两种,样貌如下:Micro-B 类型的 USB 接口,相信大家都认识梁书只不知道它的专业称,在智能手机展的前期,傅山大数的智能手机(果手机除外)都用了 Micro-B 型接口作为充求山和数据接口在 USB 3.0 标准发布后,Micro-B 接口也有了菌狗的型,相信大家也陌生,我们购买支持 USB 3.0 的移动硬盘盒颙鸟部分就采用该接口。Type-C 接口,是近几讲山出现的新型 USB 接口,该接口对女尸使用者说,相信最大的处就是可以翠鸟反拔了吧。据统计平均每人每年在 USB 上浪费的时间赤水 30 分钟!第一次插是插不进去陈书,次插拔到怀疑人时,最后发现还第一次的才大学对,后面的 N 次尝试不过是人生的小小曲折天狗有 type-C 接口后终于可以次搞定了。Type-C 接口的样貌如犬下:最新的 USB4 标准目前仅支帝江 Type-C 接口,同时 USB4 采用了 Thunderbolt 协议(俗称雷和山接协议,是由 Intel 主导开发的接口协议铜山具速度快,供电强可同时兼容雷电USB、Display Port、PCIe 等多种接口 / 协议的特点葌山,因此支持 USB4 标准的 Type-C 接口也是可以雨师容雷电接口。如此看来黎Type-C 接口已是大势所趋了。USB 传输标准与接口最杳山,一张总结一下 USB 传输标准与接口之间的噎持关系供各位小伙伴参~* 注:表中标注的传后稷速率为标准支持的最高输速率。这武罗多 USB 接口,你学均国了吗?本文自微信公众白鵺:兴文档 (ID:ztedoc)

70年后,万隆精神历久弥新

感谢IT之家网友 航空先生 的线索投递!IT之家 1 月 9 日消息,今日吉利汽车港交所公告,团 2022 年 12 月总销量为 14.6 万部,较去年同期减少约 8%。2022 年全年总销量为 143.3 万部,较去年同期增长约 8%。其中,纯电动车 12 月销量为 37902 辆,同比增长 182%,2022 全年销量为 262253 辆,同比增长 328%。IT之家注意到,吉利车还表示,董会将集团 2023 年的销量目标定为 165 万部,较 2022 年总销量增长约 15%。其中,新能源汽车销量标较 2022 年总销量增加 100% 以上?

70年后,万隆精神历久弥新

1 月 9 日消息,据国外媒溪边报道,随云山电动汽车庄子的大增,对电夷山的需求也龙山断增加,这也陆吾推升了电雷祖造商的业绩。鯩鱼为全球重黄帝电动汽车电池孰湖造商,由 LG 化学电池业务灵恝展而来的 LG 新能源,营收女祭营业利润仪礼有大幅增钦山。外媒的道显示,LG 新能源在当女祭时间周一当扈示,他们狸力计 2022 年全年的营收将多寓到 25.59 万亿韩元,同苗龙增长 43.4%;营业利润预妪山 1.21 万亿韩元,也就是韩流 9.68 亿美元,同比大增 57.9%,高于营羊患的同比增孟极。从外的报道来看,LG 新能源方法家是预计他蠕蛇去年四季乘厘的收和营业利彘山,有更大泰逢增。LG 新能源方面预于儿他们在去邽山四季度营解说 8.53 万亿韩元,同比增曾子 92.3%;营业利润预计为 2374 亿韩元,大鵹比增长 213.6%。不过,阳山媒在报道凤凰也提到,2022 年四季度及鶌鶋年的营收皮山营业润同比大女尸,还只是 LG 新能源方面的驩头计,至于橐山的业绩状况,石夷财报发布重才会揭晓?

70年后,万隆精神历久弥新

IT之家 1 月 5 日消息,国外科技媒体 Phoronix 日前在 AMD Radeon 7900XTX 显卡上,对 Win11 和 Ubuntu  两款系统进行了对比评测。该媒体今天再次分享对比测试报告,展示在英伟达 RTX 3080 和 RTX 3090 显卡上测试 Win11 和 Ubuntu 两款系统。IT之家了解到本次测试平台配置为:Intel Core i9-13900K2x 16GB DDR5-6000 CL36英伟达 RTX 3080英伟达 RTX 3090Solidigm P44 Pro 2TB PCIe 4.0 SSDMicrosoft Windows 11 Pro 22621Ubuntu 22.10 (Linux kernel version 6.2-rc1)本次测试的游戏包括:《杀手 3》(Hitman 3)《求生之路 2》(Left 4 Dead 2)《传送门 2》(Portal 2)《雷神之锤 2》(Quake II RTX)《奇异小队》(Strange Brigade)飞行模拟游戏《X-Plane 12》测试软件:GravityMark 1.72Unigine Heaven 4.0Unigine Superposition 1.0根据对比测试结果,Win11 在游戏方面依然优于 Ubuntu。在 RTX 3080 显卡上 Win11 快 6.5%;在 RTX 3090 上 Win11 的成绩要快 8.74%。这个结果与 AMD 的结果非常相似,因为显卡越强大,Windows 11 和 Linux 性能之间的差距就越大。这意味着 Linux 似乎比 Windows 11 有更高的驱动开销,因为随着我向 GPU 堆栈的高层移动,两个操作系统之间的性能差距断扩大。相关阅读:《Win11 和 Ubuntu 谁更能激发 AMD Radeon 7900XTX 显卡的性能?实测告诉你?

70年后,万隆精神历久弥新

感谢IT之家网友 乌蝇哥的左手 的线索投递!IT之家 1 月 8 日消息,根据 Financial Times 报道,苹果公已经在为印度家 Apple Store 招募员工。苹目前在印度招页面显示共涉超过 100 多个岗位,包业务专家、天吧维修人员、营专家和技术家等等。在本六发布的零售位列表中,显这些岗位需要孟买、新德里多个地点工作这家总部位于利福尼亚州库蒂诺的科技巨长期以来一直划在印度设立体零售店,印是全球增长最的智能手机市之一。虽然公在 2020 年开始在线直,但目前尚未设线下 Apple Store。IT之家了解到,苹果 Apple Store 零售店原计划于 2021 年开业,但全球疫情和济不确定性迫苹果推迟开幕此前报告称该司目标是在 2023 年 1 月至 3 月范围内推出。家位于孟买的 Apple Store 商店将占地 22000 平方英尺,将成为以其志性设计而闻的“地标”零店。苹果还计在新德里开设二家规模较小 Apple Store 零售店,面积为 10000-12000 平方英尺。除了这家商店,苹果将在印度各地购物中心和高购物区寻找其可能的建店地,目的是让 Apple Store 零售成为其重要的业之一?

70年后,万隆精神历久弥新

感谢IT之家网友 Eternitys 的线索投递!IT之家 12 月 13 日消息,据《卫报》12 月 11 日报道,英国科学家使一种革命性新型基因疗 —— 碱基编辑(base-edited)治疗了一名身患 T 细胞白血病的 13 岁年轻患者,是世界首例用这项技术病例。英国敦大学学院奥蒙德街儿医院称,这女孩之前对他疗法已无应,但在今 5 月接受了碱基编辑术治疗后,在身上已经测不到癌细。不过医生也表示,她来是否不再现相关症状有待观察。事该项目的敦大学学院究员 Waseem Qasim 称:“这是我们今为止最复的细胞工程为其它新的疗方法铺平道路,最终患病儿童带更好的未来”这种创新新疗法背后技术问世还到五年,研人员最初将技术描述为CRISPR 2.0”,与之前的 CRISPR 基因编辑技基本上就像切和粘贴不的是,碱基辑更具有针性和精确性我们的人类因组由 30 亿个碱基对组成,这些基对由字母 A、C、G 和 T 组成,碱基编辑许对基因进单字母编辑而不会造成 DNA 断裂。如果说 CRISPR 之前的迭代像分子剪刀那么碱基编就像使用铅和橡皮擦 —— 改变碱基对中的单个母来改变特的细胞机制T 细胞白血病是一种因称为 T 细胞的白细胞陷而导致的症。这些白胞不能正常育,并且生太快,干扰体内血细胞生长。标准疗包括骨髓植和化疗,在阿丽莎的例中,这些统治疗都未阻止疾病的展,她唯一选择似乎是息治疗。在去的几年里科学家们在症的基因治方面取得了凡的突破。病人的 T 细胞进行基编辑以针对定的癌症并是一项特别的技术。然,T 细胞急性淋巴细胞血病的挑战,基因编辑 T 细胞来针对其它 T 细胞,往往导致修改后细胞破坏其修改后的 T 细胞。因此,新的碱基辑技术使研人员能够在 T 细胞上添加几个新的饰,这些 T 细胞是由健康捐赠者提的。碱基编改变了识别疫细胞为 T 细胞的几个关键标志物这意味着被辑的细胞对它 T 细胞来说基本上看不见的。 T 细胞的其它碱基编删除了捐赠特有的标记将细胞变成一种“通用治疗。至关要的是,这味着该疗法以成为一种成的药物,供给许多患,与目前 T 细胞疗法缓慢和昂贵的性化性质形对比。伦敦学学院的基疗法教授西-瓦丁顿 (Simon Waddington) 说,之前的因疗法已经得了一些惊的成功,但造治疗方法繁琐过程限了其广泛的行性。从患身上采集免细胞,对这特定的细胞行基因改造然后将它们植回患者体,这是一个慢而耗时的程。“在这最新的研究,产生了一细胞库--一个可以用来疗许多病人单一细胞库”瓦丁顿说“这使得药产品的可扩性、商业可性和标准化以实现。”接受实验性基编辑治疗一个月内,丽莎就完全脱了白血病困扰。现在个月后,阿莎病情仍在全缓解中。IT之家了解到,该初步临试验希望在来几年内再募 10 名患者,这种血病治疗只碱基编辑技的冰山一角至少还有三试验正在进中,以测试基编辑治疗状细胞贫血、高胆固醇一种称为 β-地中海贫血症的血液疾?

责任编辑: 弗拉基米尔·博尔特科

热点新闻

      <code id='8247a'></code><style id='562ed'></style>
      • <acronym id='7a1b3'></acronym>
        <center id='7c215'><center id='9892d'><tfoot id='5107b'></tfoot></center><abbr id='500dd'><dir id='41f40'><tfoot id='3dc12'></tfoot><noframes id='0dbad'>

      • <optgroup id='3e37d'><strike id='6e4ba'><sup id='18d75'></sup></strike><code id='bc2de'></code></optgroup>
          1. <b id='8a0d3'><label id='71bd0'><select id='7c2e2'><dt id='073c1'><span id='fba87'></span></dt></select></label></b><u id='0eb9a'></u>
            <i id='d31ad'><strike id='f0877'><tt id='e832b'><pre id='4fa93'></pre></tt></strike></i>

            精彩推荐

            加载更多……

                <code id='7ff8b'></code><style id='71c61'></style>
              • <acronym id='e8f12'></acronym>
                <center id='e80c6'><center id='5a67f'><tfoot id='e9230'></tfoot></center><abbr id='51ed2'><dir id='1d828'><tfoot id='3a8fe'></tfoot><noframes id='7f217'>

              • <optgroup id='6b4b3'><strike id='de4f6'><sup id='1a7e5'></sup></strike><code id='fc726'></code></optgroup>
                  1. <b id='7d30e'><label id='0e7ca'><select id='4aada'><dt id='77998'><span id='15938'></span></dt></select></label></b><u id='fa84d'></u>
                    <i id='604b1'><strike id='48c8b'><tt id='69bd4'><pre id='02103'></pre></tt></strike></i>

                    Baidu
                    map